2019-2024

Updated 4/23/24

* = preprint
+ = thesis/dissertation
# = other

# Andersen, O. S., Nairn, A. C., Palmer, L. G., & Shapley, R. M. (2019). In Memoriam: David C. Gadsby, PhD. Journal of General Physiology, 151(8), 967–969. https://doi.org/10.1085/jgp.201912400

* Anisimova, M., van Bommel, B., Mikhaylova, M., Wiegert, J. S., Oertner, T. G., & Gee, C. E. (2021). Spike-timing-dependent plasticity rewards synchrony rather than causality. bioRxiv. https://doi.org/10.1101/863365

Anisimova, M., van Bommel, B., Wang, R., Mikhaylova, M., Wiegert, J. S., Oertner, T. G., & Gee, C. E. (2023). Spike-timing-dependent plasticity rewards synchrony rather than causality. Cerebral Cortex, 33(1), 23–34. https://doi.org/10.1093/cercor/bhac050

* Anisimova, M., van Bommel, B., Wiegert, J. S., Mikhaylova, M., Oertner, T., & Gee, C. (2019). Long vs short-term synaptic learning rules after optogenetic spike-timing-dependent plasticity. ResearchGate. https://doi.org/10.1101/863365

Ardiel, E. L., Lauziere, A., Xu, S., Harvey, B. J., Christensen, R. P., Nurrish, S., Kaplan, J. M., & Shroff, H. (2022). Stereotyped behavioral maturation and rhythmic quiescence in C. elegans embryos. eLife, 11, e76836. https://doi.org/10.7554/eLife.76836

* Ardiel, E. L., Xu, S., Nurrish, S., Lauziere, A., Harvey, B. J., Kaplan, J. M., & Shroff, H. (2022). Stereotyped Behavioral Maturation and Rhythmic Quiescence in C. elegans Embryos (p. 2021.12.09.471955). bioRxiv. https://doi.org/10.1101/2021.12.09.471955

+ Buchanan, J. (2021). Oligodendrocyte Precursor Cells, a Multifunctional Glial Cell in the Mammalian Visual Cortex [Dissertation, Northeastern University]. https://www.proquest.com/openview/179c2e16d657717d1634f19fac4dd2b7/1?cbl=18750&diss=y&parentSessionId=AqT9T%2BrssokAJrjoevlbc9uGDd3lnoNx8cZxZvj%2BtCM%3D&pq-origsite=gscholar&accountid=27994

* Espino, C. M., Lewis, C. M., Ortiz, S., Dalal, M. S., Garlapalli, S., Wells, K. M., O’Neil, D. A., Wilkinson, K. A., & Griffith, T. N. (2022a). NaV1.1 is essential for proprioceptive signaling and motor behaviors (p. 2022.05.05.490851). bioRxiv. https://doi.org/10.1101/2022.05.05.490851

Espino, C. M., Lewis, C. M., Ortiz, S., Dalal, M. S., Garlapalli, S., Wells, K. M., O’Neil, D. A., Wilkinson, K. A., & Griffith, T. N. (2022b). NaV1.1 is essential for proprioceptive signaling and motor behaviors. eLife, 11, e79917. https://doi.org/10.7554/eLife.79917

* Griffith, T. N., Docter, T. A., & Lumpkin, E. A. (2019a). Tetrodotoxin-sensitive sodium channels mediate action potential firing and excitability in menthol-sensitive Vglut3-lineage sensory neurons (p. 670620). bioRxiv. https://doi.org/10.1101/670620

Griffith, T. N., Docter, T. A., & Lumpkin, E. A. (2019b). Tetrodotoxin-Sensitive Sodium Channels Mediate Action Potential Firing and Excitability in Menthol-Sensitive Vglut3-Lineage Sensory Neurons. The Journal of Neuroscience, 39(36), 7086–7101. https://doi.org/10.1523/JNEUROSCI.2817-18.2019

* Griswold, J. M., Bonilla-Quintana, M., Pepper, R., Lee, C. T., Raychaudhuri, S., Ma, S., Gan, Q., Syed, S., Zhu, C., Bell, M., Suga, M., Yamaguchi, Y., Chéreau, R., Nägerl, U. V., Knott, G., Rangamani, P., & Watanabe, S. (2023). Membrane mechanics dictate axonal morphology and function (p. 2023.07.20.549958). bioRxiv. https://doi.org/10.1101/2023.07.20.549958

+ Hirata Miyasaki, E. (2022). Deep and Fast High-Resolution 3D Microscopy [UC Santa Cruz]. ProQuest. https://escholarship.org/uc/item/0r83j8zw

+ Kusick, G. F. (2022). Transient docking of synaptic vesicles [Johns Hopkins University]. http://jhir.library.jhu.edu/handle/1774.2/68358

Kusick, G. F., Chin, M., Raychaudhuri, S., Lippmann, K., Adula, K. P., Hujber, E. J., Vu, T., Davis, M. W., Jorgensen, E. M., & Watanabe, S. (2020). Synaptic vesicles transiently dock to refill release sites. Nature Neuroscience, 23, 1329–1338. https://doi.org/10.1038/s41593-020-00716-1

# Lee, Y. il, & Rimer, M. (2020). Wesley J. Thompson (1947–2019). Frontiers in Molecular Neuroscience, 13. https://doi.org/10.3389/fnmol.2020.00091

Li, S., Raychaudhuri, S., Lee, S. A., Brockmann, M. M., Wang, J., Kusick, G., Prater, C., Syed, S., Falahati, H., Ramos, R., Bartol, T. M., Hosy, E., & Watanabe, S. (2021). Asynchronous release sites align with NMDA receptors in mouse hippocampal synapses. Nature Communications, 12, 677. https://doi.org/10.1038/s41467-021-21004-x

* Li, S., Raychaudhuri, S., Lee, S. A., Wang, J., Kusick, G., Prater, C., Syed, S., Falahati, H., Ramos, R., Bartol, T. M., Hosy, E., & Watanabe, S. (2020). Release sites are positioned to activate NMDA receptors. bioRxiv. https://doi.org/10.1101/2020.05.01.072157

* Mali, S. S., Silva, R., Gong, Z., Cronce, M., Vo, U., Vuong, C., Moayedi, Y., Cox, J. S., & Bautista, D. M. (2024). SARS-CoV-2 papain-like protease activates nociceptors to drive sneeze and pain (p. 2024.01.10.575114). bioRxiv. https://doi.org/10.1101/2024.01.10.575114

# Nishimura, N. (2022). Navigating neurophotonics, words of wisdom: An interview with Professor David Kleinfeld. Neurophotonics, 9(1), 010401. https://doi.org/10.1117/1.NPh.9.1.010401

Ralowicz, A. J., Hokeness, S., & Hoppa, M. B. (2024). Frequency of spontaneous neurotransmission at individual boutons corresponds to the size of the readily releasable pool of vesicles. Journal of Neuroscience. https://doi.org/10.1523/JNEUROSCI.1253-23.2024

+ Ramos, R. A. (2022). Synaptic Plasticity Governs the Specificity and Generalization of CTA Memory [Dissertation, Brandeis University]. https://www.proquest.com/openview/1cc7fa8c05144492da65259de8fa9f61/1?pq-origsite=gscholar&cbl=18750&diss=y

Robert, V., Therreau, L., Davatolhagh, M. F., Bernardo-Garcia, F. J., Clements, K. N., Chevaleyre, V., & Piskorowski, R. A. (2020). The mechanisms shaping CA2 pyramidal neuron action potential bursting induced by muscarinic acetylcholine receptor activation. Journal of General Physiology, 152(4). https://doi.org/10.1085/jgp.201912462

Sáez, J. C. (2024). Michael V. L. Bennett (1931 to 2023): A world-renowned authority in the field of electrical synapses in the nervous system. Proceedings of the National Academy of Sciences, 121(10), e2401039121. https://doi.org/10.1073/pnas.2401039121

Schweikert, L. E., Bagge, L. E., Naughton, L. F., Bolin, J. R., Wheeler, B. R., Grace, M. S., Bracken-Grissom, H. D., & Johnsen, S. (2023). Dynamic light filtering over dermal opsin as a sensory feedback system in fish color change. Nature Communications, 14, 4642. https://doi.org/10.1038/s41467-023-40166-4

# The people behind the papers – Carla Argañaraz, Tamara Adjimann and Mariano Soiza-Reilly. (2022). Development, 149(24), dev201521. https://doi.org/10.1242/dev.201521

+ Vu, T. N. (2021). Machinery of Synaptic Vesicle Docking [Dissertation, University of Utah]. https://www.proquest.com/openview/63d5cf99ea495d4f9f0162f297b18c17/1?pq-origsite=gscholar&cbl=18750&diss=y

* Yin, C., Morita, T., & Parrish, J. Z. (2023). A cell atlas of the larval Aedes aegypti ventral nerve cord (p. 2023.09.08.556941). bioRxiv. https://doi.org/10.1101/2023.09.08.556941

Yin, C., Morita, T., & Parrish, J. Z. (2024). A cell atlas of the larval Aedes aegypti ventral nerve cord. Neural Development, 19(1), 2. https://doi.org/10.1186/s13064-023-00178-8